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1 Introduction

Starting from the initial outbreak in December 2019, the spread of COVID-19 continues to be the defining
feature of 2020 now nearly half-way into the year. With no clear timeline for the development of a vaccine,
understanding how this disease will continue to spread remains a critically important question, and one that
is well suited for study by simulation. One established approach for studying the spread of infectious disease
is the use of compartmental models, which first gained popularity in the 20*" century with the foundational
work of Kermack and McKendrick [1927]. The key idea in this class of models is to break the population up
into discrete compartments, e.g. susceptible, infected, and recovered individuals in the case of epidemiology,

and model the movement of individuals between compartments.

One relatively simple example is the Susceptible-Infected-Recovered-Susceptible (SIRS) model, which aims
to model pandemics wherein immunity is not permanent, (e.g. the case with the flu, and possibly with
COVID-19). Let S, I, and R be the sizes of the susceptible, infected, and recovered populations respectively.
Then the total population is given by N = S + I + R. Furthermore, let 5 be the infection rate, i.e. the
probability that an infected agent transfers the disease to a susceptible agent in a period, let v be the rate
of recovery, and let £ be the rate at which agents lose immunity. Then we can characterize the evolution of

the infection over time ¢ with the following system of differential equations,
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We can characterize the steady state of this system by setting each equation to zero, and if we let p = I/N



be the disease prevalence, then dividing each equation in the above expression by N gives
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The last equation implies that in the steady state(s),
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Furthermore, because we have assumed a fixed population N = S + I + R, then dividing by N we have
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Substituting (7) into (8) and (8) into (5), we get that % = 0 when
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For the second equilibrium to exist, we need f — v > 0, which is where the basic reproduction number

Ry = /7 comes from. So the system admits two steady states,
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The disadvantage of the SIRS model is that it assumes homogeneous mixing amongst the agents. In other
words, at each time step, an infected agent can interact with any other agent in the population and, given
that they are susceptible, infect them with probability 5. If we were to represent the system of interactions
as a graph, it would be fully connected. This of course does not reflect how individuals actually interact,
and presents a real drawback for studying the effects of an intervention like social distancing, which alters
how agents interact and has become the primary policy response to COVID-19. My goal with this project is
to improve upon the SIRS model by adding structure to the interactions of individuals via random graphs

in a continuous time simulation of a pandemic.



2 Model

2.1 Social Structure

In order to impose some level of structure on social interactions, we can first generate a random graph using

the Erased Configuration model described in the following subroutine:

Algorithm 1: Erased Configuration Model Subroutine

1 Define population size n.
2 Sample degree sequence {d;}? ; i.i.d. from degree distribution D.

1 i % n n
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3 Let L, := Y., d; and generate sequence of half-edges x = {x(ll),
4 Sample a random permutation y from x.

5 Pair corresponding half-edges of x and y to generate the edges of random graph G.
6 Remove self-loops and duplicate edges from G

7 return G.

For simplicity, we will generate {d;}?_, v Poisson(v), where v represents the average number of contacts

(edges) each individual (node) has.

2.2 Main Routine

In addition to specifying structure for inhomogeneous interactions, we deviate from the typical SIRS frame-
work by allowing our agents to perish from the infection, and subsequently be removed from G. Therefore,

the possible events in the system we are simulating include:

An infected node recovers and gains immunity.

A recovered node loses immunity and becomes susceptible.

A susceptible node is infected by an infected neighbor.

An infected node dies and is removed from G.

Now, to simulate the spread of a pandemic through a network, we make the following simplifying assumption,

Assumption 1 (Exponential Events) Assume that the time between each event in this simulation follows

an exponential distribution and that events are independent so that,

A.1.a. Given that a node ny is infected, the duration of the infection for ny is an exponential random variable

with mean 1/~ days.



A.1.b. Given that a node ny is infected, the time at which ny dies is an exponential random variable with

mean 1/p days.

A.1.c. Given that a node ng is susceptible and has an infected neighbor, the time until that neighbor infects

ng is an exponential random variable with mean 1/8 days.

A.1.d. Given that a node ng is immune, the time until ng loses immunity is an exponential random variable

with mean 1/§ days.

The benefit of Assumption 1 should be immediately clear. Suppose that n; is an infected node and let
R ~ Exp(y) be the time until n; recovers and D ~ Exp(u) be the time until n; dies, Then the probability

that n; dies before recovering is given by
P(D < R) :/OOOP(D <R,R=r)dr
/OOOP(D<R|Rr)fR(T) dr
= /000 P(D < r)fr(r)dr
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So for modeling COVID-19, we know it takes approximately 25 days on average to fully recover (y = 1/25,
Ling et al. [2020]), and we know that the mortality rate is approximately 7%, so we can back-out u as

0.07 =

n
— = = 0.003.

25

We can use a similar procedure to back-out 5 once we specify a probability that a susceptible node is infected

by an infected neighbor. For ¢ we will simply make an assumption about the duration of immunity.

Suppose now that we just have one node and want to determine the time of the next event £ = min{D, R},
then another convenient property of assuming exponential events is that T ~ Exp(y + p) and because the

type of event E only has support on {Recovery, Death} = {Recovery7 Recoveryc}, and

P(E = Death) = P(D < R) = ——
Aty
=
P(E = Recovery) = P <E = Deathc) S S — —
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So FE is a Bernoulli random variable with success probability p/(u + ), and we can simulate the next event

by drawing a time T and a type of event E. This argument generalizes to the case of many independent



exponential random variables. If T; ~ Exp()\;) for all i € {1,...,n} and the T;’s are jointly independent,
then,

T =min{T},...,T,} ~ Exp (Z )\Z-) ,
=1

and the index of the event 7 follows a multinomial distribution where

P(i:j): Z?:l)‘i'

These properties of the exponential distribution motivate the following routine for simulating pandemic on
a network. For notational convenience let A(n) be the set of neighbors of the node(s) n and let I'(n;,n;) be

the count of edges between node(s) n; and n,;.

Algorithm 2: Network Pandemic Simulation

Define end time Ti,.x, population size N, initial number of infected nodes Ny o, number of simulations
S, and v, u, B, and &.

2 for s+ 0 to S do
3 Generate graph G.
4 Sample Ny nodes {ny,...,nny,,} at random from G without replacement.
5 Ii={n1,...,nn.,}
6 S={neG|necAll)Nn¢gl}
7 R :={}
8 Initialize:
9 t =
10 Nr: = Nrpo
11 Ng :=T(S,I)
12 Nir:=0
13 Np =
14 while t < T do
15 Simulation Routine.
16 end
17 end
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Algorithm 3: Simulation Routine
a:= (y+4 u)N;r+ BNg + {Ng.
Sample T ~ Exp(«).

t=t+T.

Sample E ~ Multinomial (%7 “g’, ﬁJ;fs , %)

if F = Recovery then
N[ = N[ —1.
Ngr := Ng+ 1.

Sample n; uniform at random from I.
Remove n; from I and add n; to R.
Ny := Ny —T'(ng, S).
S={neG|neAd)Nn &I}
else if F = Death then

Ny := Ny —1.

Np := Np + 1.

Sample n; uniform at random from I.
Remove ny from I.

Remove n; from G.

Ng := Ny —T'(ng, S).
S:={neG|neAll)Nn¢I}.
else if E = Infection then

Ny := Ny—+1.
Sample ng from S according to n, ~ Multinomial (I}(?;SII)), o Fif(bg[)”)
Add n, to I.
N := N; +T(ns, S).
S={neG|neAl)Nn&I}.

else
Ngr := Np — 1.
Sample ng uniform at random from R.
Remove ng from R.
Ng := Ny + T(ng, I).
S:={neG|lneAll)Nn¢I}.

end

In practice, we do not actually determine S each loop, but use shortcuts for finding the new susceptible

nodes. The notation used here is just for convenience.



3 Results

3.1 Parameter Specification

For the purpose of the experiments in this section, the following simulation parameters are used:

1. Population size: 50,000.

2. Initially infected nodes: 50 (0.1% of the population).

3. v =1/25 — Average disease duration of 25 days.!

4. 11 =0.003 — Corresponds to an average mortality rate of 7%.
5. € = 1/270 — Immunity lasts for an average of 270 days.>

In addition to the parameters specified above, we experiment with two different values of 8 corresponding

to infection rates of 10% and 50% respectively. We also experiment with three configurations of the Poisson

degree distribution with A € {5, 10,20} corresponding to strong, mild, and no social distancing scenarios.?

3.2 Estimation

The tables below displays experimental results from 1,000 simulations with 95% confidence intervals.

5 Contacts
Infection Rate: 10% Infection Rate: 50%
P(No Infections on 500 Day)  0.868  (0.847, 0.839) 0.0 (0.0, 0.0)
Max. # Infected 44.24  (43.51,44.97) 29,723.33  (29,715.28, 29,731.38)
Time of Max. # Infected 19.39 (15.83, 22.96) 26.66 (26.63, 26.70)
Max. # Immune 11123 (105.57, 116.89) 38,170.88  (38,165.18, 38,176.57)
Time of Max. # Immune 165.81  (160.01, 171.62) 96.69 (96.54, 96.84)
# Infected on 500" Day 2.28 (172, 2.85) 2, 655.20  (2,648.46, 2,662.12)
# Immune on 500" Day 55.80 (50.09, 61.51) 30,120.95 (30,110.77, 30,131.12)
# Susceptible on 500th Day 20.81 (15.54, 26.07) 2,434.82 (2,428.89, 2,440.75)
# Deaths on 500" Day 1459 (1361, 1557)  6,540.32  (6,535.62, 6,545.01)
Time # Immune > # Infected  23.02 (22.67, 23.37) 38.34 (38.30, 38.37)

Table 1: Experimental Results with n = 1,000 and 5 Contacts

11t has been reported that COVID-19 can take 1-14 days from the initial exposure to manifest symptoms, and there is some
evidence it takes around 9.5 days on average to stop shedding the virus (i.e. when the patient is no longer infectious). Therefore;
25 days is a good, and perhaps conservative, first approximation of the average disease duration [Ling et al., 2020].

2In previous outbreaks similar to COVID-19, e.g. SARS and MERS, immunity was estimated to last from 2-3 years, so
9 months of immunity appears to be a conservative estimate. https://www.npr.org/sections/health-shots/2020/04/13/
833412729/how-long-does-it-take-to-recover-from-covid-19-and-how-long-are-you-infectious

3The baseline in this case is slightly higher than the average 16.52 contacts estimated by Del Valle et al. [2007].
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10 Contacts

Infection Rate: 10%

Infection Rate: 50%

P(No Infections on 500" Day) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0)
Max. # Infected 8,034.99 (8024.29, 8045.70)  38,222.77  (38,216.11, 38,229.44)
Time of Max. # Infected 151.54 (151.15, 151.94) 13.57 (13.55, 13.58)
Max. # Immune 26,507.92  (26,496.27, 26,519.56) 40,047.19  (40,041.91, 40,052.47)
Time of Max. # Immune 246.64 (246.19, 247.08) 91.35 (91.15, 91.56)
4 Tnfected on 500" Day 806.65 (800.07, 813.23)  3,016.92  (3,011.65, 3,022.19)
4 Tmmune on 500" Day 16,026.99  (16,005.88, 16,048.09) 34,908.82  (34,901.58, 34,916.05)
# Susceptible on 500" Day 7,535.98 (7,486.75, 7,585.21)  2,231.91 (2,228.11, 2,235.72)
4 Deaths on 500" Day 3.456.32 (345229, 3460.34)  7,543.71  (7,538.87, 7,548.54)
Time # Immune > # Infected  103.90 (102.93, 104.87) 27.28 (27.26, 27.29)

Table 2: Experimental Results with n = 1,000 and 5 Contacts

20 Contacts

Infection Rate: 10%

Infection Rate: 50%

P(No Infections on 500" Day) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0)
Max. # Infected 20,397.22  (20,387.21, 20,407.22) 43,347.78 (43,342.59, 43,352.97)
Time of Max. # Infected 61.46 (61.36, 61.55) 6.99 (6.98, 7.00)
Max. # Immune 37,038.44 (37,032.39, 37,044.49) 40,876.32 (40,871.37, 40,881.28)
Time of Max. # Immune 132.95 (132.77, 133.12) 98.39 (98.07,98.71)
# Infected on 500" Day 2,335.29 (2,328.78, 2,341.81) 3,194.65 (3,190.39, 3,198.91)
# Immune on 500" Day 29,018.81  (29,006.09, 29,031.53) 36,926.73  (36,920.71, 36,932.76)
# Susceptible on 500" Day  10,202.690 (10,190.29, 10,215.10)  1,542.72  (1,539.93, 1,545.50)
# Deaths on 500" Day 5,942.01 (5,937.47, 5,946.56) 7,979.25 (7,974.12, 7,984.37)
Time # Immune > # Infected 67.19 (67.11, 67.28) 22.20 (22.19, 22.21)

Table 3: Experimental Results with n = 1,000 and 20 Contacts

In order to generate the plots in Figures 3.2 and 3.2, the simulations are discretized by taking the average of
each counter over each day (if there is no change the the counter takes the same value as the previous day’s
average). The plots are the the averages of each daily average across the 1,000 simulations, with the shaded

regions representing 95% confidence intervals (in most cases these are too tight to actually visualize).
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Infection Dynamics with Network Structure
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The most notable feature of these results is that social distancing is very effective at reducing the spread of
infection. In Table 1 we see that the model configuration with an average five contacts and a 10% infection
rate results in a large positive probability (0.868) that the infection ends in the first 500 days. This is
reflected in Figure 3.2, where we see the infection failing to take hold for this parameterization so that the
number of infections decreases towards zero from the very start. Figures 3.2 and 3.2 also clearly display the
“flattening of the curve” phenomenon that social distancing is meant to accomplish (this is also reflected
in Tables 1, 2, and 3, where decreasing the number of contacts pushes out the time that the number of
infections reaches its peak and lowers that peak). Despite this, the number of infected agents on the 500"
day is decreasing in the average number of contacts, regardless of the infection rate. Looking at the results

in Tables 1, 2, and 3 we see that social distancing also has the effect decreasing the number of agents that



have died by the 500" day, regardless of the infection rate.

One surprising result from the 50% infection rate case is that even though decreasing the number of contacts
decreases the maximum number infected (29,723, 38,223, and 43,348 in the five, ten, and twenty contact
cases respectively), and pushes out the time of the infection peak (27, 14, and 7 days respectively), it has
much less of a pronounced effect on the maximum number of agents gaining immunity (38,171, 40,047, and
40,876 respectively).

The other interesting behavior we can see emerging is the occurrence of resurgences, e.g. in the five contact,
50% infection rate and twenty contact, 10% infection rate cases. The fact that there is recurrence in the no
social distancing case is especially interesting, as it tells us that even though the pandemic peaks earlier,
the drop in infections after the peak is not sharp enough to stop the infection from spreading further, which
contradicts the logic of trying to achieve herd immunity as quickly as possible by refusing to adopt social
distancing (e.g. the policy pursued by Sweden and the UK with COVID-19).

4 Conclusion

This project has shown how simulating a pandemic with explicit social structure can help us understand the
spread of infectious diseases through a population. Understanding the mechanics of how a disease spreads
is important for predicting how effective an intervention like social distancing will actually be. The results
from this simulation show that in some cases, very aggressive social distancing can keep a disease from
spreading at all. To better understand these dynamics going forward, it the next step would be validating
the random graph structure chosen against actual social structures. Experimenting with other graph models
of representing social interactions would give us insight into how robust the results in this paper are to the

specific choice of a configuration model with a Poisson degree distribution.
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