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Change-Point Detection

• Change-Point Detection (CPD) is a classical problem in statistical inference (Page, 1954).

• Problem set-up:

▷ T Observations: y1:T := {yt}Tt=1 where yt ∈ Rd

▷ L Change-Points: τ 1:L ⊂ {1, . . . ,T}, with τ0 := 1 < τ1 < . . . < τL < τL+1 := T + 1,
and collection of L+ 1 distributions {Fℓ}Lℓ=0 with Fℓ ̸= Fℓ+1 such that:

yt ∼ Fℓ, ∀ t ∈ [τℓ, τℓ+1).

▷ Goal: consistently estimate and perform inference on {L, τ 1:L}.
• Mean and variance change-points:

▷ Univariate: changes in piece-wise constant mean µ1:T := {E[yt ]}Tt=1 and precision
λ1:T := {Var(yt)−1}Tt=1 signals.

▷ Multivariate: changes in piece-wise constant mean signal µ1:T .
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Ion Channel (Hotz et al., 2013)
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Oil Well Lithology (Bohling and Dubois, 2003)
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Daily Step Count
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Uncertainty Quantification

• We would like to quantify the uncertainty around estimates τ̂ 1:L̂.

• Early attempts limited to a single mean change (Siegmund, 1986; Worsley, 1986; Jirak,
2015; Horváth et al., 2017), required knowledge of L (Bai and Perron, 2003), or only
produced approximate sets from some limiting distribution (Bai, 2010).

• SMUCE (Frick et al., 2014) advanced the state-of-the-art, but returns CIs that can be
overly conservative with undesirable coverage properties as α decreases (Fryzlewicz, 2024).

• Methods for multivariate data and variance changes remain underdeveloped.

Davis Berlind, Lorenzo Cappello, Oscar Madrid Padilla A Bayesian framework for change-point detection with uncertainty quantification



8/45

Bayesian CPD

• Issues with existing Bayesian CPD methods:

▷ Do not scale beyond small T .
▷ Generally lack theoretical guarantees for τ̂ 1:L̂.
▷ Posterior distributions can be difficult to interpret.

• Proposal:

▷ Introduce Bayesian single change-point (SCP) models with optimal localization
properties.

▷ Modularly combine SCP models and approximate posterior distribution using
variational Bayes.
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Single Change-Point Model

• Change-point τ ∈ {1, . . . ,T} with P(τ = t) = πt

• Posterior: P(τ = t | y1:T ) := πt ∝ πtp(y1:T | τ = t).

• MAP Estimator: τ̂MAP := arg max
1≤t≤T

πt .

• α-Level Credible Sets:

CS(α,π1:T ) := arg min
S⊆[T ]

|S | s.t.
∑
t∈S

πt ≥ 1− α.
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Single Change-Point Models

• Three Bayesian models for a single change-point in y1:T :

▷ Change in mean (d ≥ 1).
▷ Change in variance (d = 1).
▷ Change in mean and variance (d = 1).
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Multivariate Mean Single Change-Point (Mean-SCP) Model

yt | µt ,Λt
ind.∼ Nd(µt ,Λ

−1
t )

µt = b1{t ≥ τ}

b ∼ Nd(0, ω
−1
0 Id)

τ ∼ Categorical(π1:T )

b ⊥⊥ τ
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Mean-SCP Posterior

b | τ = t, y1:T ∼ Nd

(
bt ,Ω

−1
t

)
τ | y1:T ∼ Categorical(π1:T )

Ωt = ω0Id +
T∑

t′=t

Λt′

bt = Ω
−1
t

T∑
t′=t

Λt′yt′

πt ∝ πt |Ωt |−
1
2 exp

∥Ω
1
2
t bt∥22
2


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Variance Single Change-Point (Var-SCP) Model

yt | λt
ind.∼ N (0, λ−1

t )

λt = ωts
1{t≥τ}

s ∼ Gamma(u0, v0)

τ ∼ Categorical(π1:T )

s ⊥⊥ τ
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Var-SCP Posterior

s | τ = t, y1:T ∼ Gamma (ut , v t)

τ | y1:T ∼ Categorical(π1:T )

ut = u0 +
T − t + 1

2

v t = v0 +
1

2

T∑
t′=t

ωt′y
2
t′

πt ∝
πtΓ(ut)

vut
t

exp

(
−
1

2

t−1∑
t′=1

ωt′y
2
t′

)
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Mean-Variance Single Change-Point (MeanVar-SCP) Model

yt | µt , λt
ind.∼ N (µt , λ

−1
t )

µt = b1{t ≥ τ}

λt = ωts
1{t≥τ}

b | s ∼ Normal(0, (ω0s)
−1)

s ∼ Gamma(u0, v0)

τ ∼ Categorical(π1:T )

{b, s} ⊥⊥ τ
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MeanVar-SCP Posterior

b | s, τ = t, y1:T ∼ N (bt , (ωts)
−1)

s | τ = t, y1:T ∼ Gamma(ut , v t)

τ | y1:T ∼ Categorical(π1:T )

ωt = ω0 +
T∑

t′=t

ωt′

bt =
T∑

t′=t

ωt′yt′

ωt

ut = u0 +
T − t + 1

2

v t = v0 −
ωtb

2
t

2
+

1

2

T∑
t′=t

ωt′y
2
t′

πt ∝
πtΓ(ut)

v
ut
t ω

1/2
t

exp

−
1

2

t−1∑
t′=1

ωt′y
2
t′


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Localization Theory

• True change-point: t0 ∈ {1, . . . ,T}.
• Minimum spacing condition: ∆T := min{t0,T − t0 + 1} ≳ logT .

• Consistency: limT→∞ P (|τ̂MAP − t0| ≤ ϵT ) = 1 and limT→∞
ϵT
∆T

= 0. (Yu, 2020)

Davis Berlind, Lorenzo Cappello, Oscar Madrid Padilla A Bayesian framework for change-point detection with uncertainty quantification



19/45

Detectable Mean and Scale Change

Assumption 1 (Detectable Mean Change)

Suppose E[yt ] = b01{t≥t0} for some t0 ∈ [T ] and b0 ∈ Rd and Var(yt) = Λ−1
t . Assume that

∆T ≳ logT and ∆T min1≤t≤T∥Λ1/2
t b0∥22 ≫ d logT .

Assumption 2 (Detectable Scale Change)

Suppose Var(yt) = (s20 )
1{t≥t0} for some t0 ∈ [T ] and 0 < s < s0 < s < ∞. Assume that

∆T ≳ logT and ∆T (s
2
0 − 1)2 ≫ logT .

• Necessary: consistent localization not possible when ∆T∥b0∥22 ≲ logT (Wang et al., 2020)

• Non-Sparse: suppose ∥b0∥∞ = O(1) and ∆T ≥ log1+ε T . Assumption 1 not met if
∥b0∥0 ≤ d0 ≲ d log−ε T :

∆T∥b0∥22 ≲ d0 log
1+ε T ≲ d logT .

Similar assumptions appear in Bai (2010); ?); Li et al. (2023).
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SCP Localization Rates

Theorem 1

Let y1:T be a sequence of independent, sub-Gaussian observations with ∥yt∥ψ2 = O(1) and
assume that maxt∈[T ] | log πt | ≤ Cπ logT for some Cπ. For each SCP model, the following table
summarizes the minimum spacing ∆T and signal strength κ(b0, s

2
0 ) conditions under which

limT→∞ P (|τ̂MAP − t0| ≤ ϵT ) = 1, where ϵT = O
(

logT
κ(b0,s20 )

)
:

Model Assumptions κ(b0, s
2
0 )

Mean-SCP Assumption 1, Var(yt) = Λ−1 ∥Λ1/2b0∥22
Var-SCP Assumption 2, E[yt ] = 0 (s20 − 1)2

MeanVar-SCP Assumption 1 or 2 max{min{b20, b20/s20}, (s20 − 1)2}

We also show that when y1:T is an α-mixing process, then under mild regularity conditions
P (|τ̂MAP − t0| ≤ ϵ̃T ) = 1 where ϵ̃T ∝ ϵT logT.

Results of Wang and Samworth (2017), Wang et al. (2020), and Wang et al. (2021) show that
the minimax optimal localization rate is proportional to [∆Tκ(b0, s

2
0 )]

−1.
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Detection Rule

Corollary 2

Let ϵT be the localization error corresponding to one of SCP models, then for any α > 0,
limT→∞ P (|CS(α,π1:T )| ≤ 2ϵT ) = 1.

• Detect change-point if |CS(α,π1:T )| ≤ log1+δ T for some small δ > 0.
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Multiple Independent CHange-point (MICH) Model

We can modularly combine SCP models to incorporate multiple change-points in µ1:T and/or
λ1:T :

yt | µt , λt
ind.∼ N (µt , λ

−1
t ), 1 ≤ t ≤ T ,

µt := µ0 +
J+L∑
i=1

µit :=
J∑

j=1

bj1{t≥τj} +
J+L∑

ℓ=J+1

bℓ1{t≥τℓ},

λt := λ0

J+K∏
i=1

λit :=
J∏

j=1

s
1{t≥τj}
j

J+L+K∏
k=J+L+1

s
1{t≥τk}
k ,

τi
ind.∼ Categorical(πi,1:T ), 1 ≤ i ≤ J + L+ K ,

{bj , sj}
ind.∼ Normal-Gamma(0, ω0, u0, v0), 1 ≤ j ≤ J,

bℓ
ind.∼ N (0, ω−1

0 ), J < ℓ ≤ J + L,

sk
ind.∼ Gamma(u0, v0), J + L < k ≤ J + L+ K .
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Variational Bayes Approximation to MICH

• Could fit MICH with Gibbs sampler, but the discrete, highly correlated, high-dimensional
parameters lead to poor mixing.

• Following the example set in Wang et al. (2020), we use Mean-Field Variational Bayes to
find a q ∈ QMF that approximates true posterior of MICH:

QMF :=

{
q : q =

J∏
j=1

qj(bj , sj , τj)
J+L∏

ℓ=J+1

qℓ(bℓ, τℓ)
J+L+K∏

k=J+L+1

qk(sk , τk)

}
.

• Finding q ∈ QMF that minimizes the KL divergence with the true posterior equivalent to
maximizing ELBO:

Θ := {{bj , sj , τj}Jj=1, {bℓ, τℓ}J+L
ℓ=J+1, {sk , τk}

J+L+K
k=J+L+1}

ELBO(q) :=

∫
q(Θ) log

p(y1:T ,Θ)

q(Θ)
dΘ

= log p(y1:T )− KL(q ∥ p).
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Fitting MICH with VB

• Computationally efficient backfitting procedure to find q:

Algorithm 1 MICH Variational Approximation

Initialize Posterior Parameters.
repeat

For ℓ ∈ {1, . . . , L}: Subtract out ℓth mean component from µ1:T

and update qℓ by fitting Mean-SCP model to partial residual.
For k ∈ {1, . . . ,K}: Divide out k th scale component from λ1:T

and update qk by fitting fit Var-SCP model to partial residual.
For j ∈ {1, . . . , J} Partial out j th mean and scale component from
µ1:T and λ1:T and update qj by fitting MeanVar-SCP model to
partial residuals.

until Convergence

• Algorithm 1 is equivalent to maximizing the ELBO via coordinate ascent, guaranteeing
convergence. Each outer loop of Algorithm 1 is O(T (J + L+ K )).

• Can use value of ELBO to automatically select J, L, and K (MICH-Auto).
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Multivariate Simulation Study

Generate 5,000 replicates of following simulation with T = 250, ∆T = 10, and C =
√
10,

d ∈ {10, 50, 100}, L∗ ∈ {5, 10, 20}, and p ∈ {0.1, 0.5, 1}:
i. Draw τ 1:L∗ uniformly from [T ] subject to the minimum spacing condition |τℓ+1 − τℓ| ≥ ∆T with

τ0 = 1 and τL∗+1 = T + 1.

ii. Draw {Ui}di=1 ∼ Uniform(−2, 2) and set si := 2Ui .

iii. Let A be a set of d0 := ⌊pd⌋ active coordinates drawn uniformly at random from [d ].

iv. Set µ0 := 0, and for each i ∈ [d ] draw ξℓ,i ∼ Bernoulli(0.5) and set:

µℓ,i := µℓ−1,i +
C(1− 2ξℓ,i )si1{i∈A}√

min{τℓ+1 − τℓ, τℓ − τℓ−1}
.

v. Draw yt
ind.∼ Nd

(∑L∗

j=0 µℓ1{τℓ≤t<τℓ+1}, diag(s1:d)
)
.

Davis Berlind, Lorenzo Cappello, Oscar Madrid Padilla A Bayesian framework for change-point detection with uncertainty quantification
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Multivariate Simulation Study

• Calculate bias |L∗ − L| and measure accuracy of τ̂ 1:L̂ with FPSLE and FNSLE statistics:

dFPSLE(τ̂ 1:L̂∥τ 1:L) :=
1

2(L̂+ 1)

L̂+1∑
ℓ=1

|τ̂ℓ−1 − τiℓ−1|+ |τ̂ℓ − τiℓ |,

{iℓ}L+1
ℓ=1 := {i ∈ [L+ 1] : τiℓ−1 < (τ̂ℓ−1 + τ̂ℓ)/2 ≤ τiℓ ∀ ℓ ∈ [L+ 1]}

dFNSLE(τ̂ 1:L̂∥τ 1:L) := dFPSLE(τ 1:L∥τ̂ 1:L)

• Fit MICH with L set to true value (Ora-MICH) and selected from the ELBO (Auto-MICH)
and return 90% credible sets.

• Compare to the E-Divisive method of James and Matteson (2015), the Two-Way
MOSUM (ℓ2-HD) method of Li et al. (2023), and the informative sparse projection
(Inspect) method of Wang and Samworth (2017).
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Multivariate Simulation Results
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Multivariate Simulation Results
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MICH fit of Ion Channel (Hotz et al., 2013)
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MICH Fit of Oil Well (Bohling and Dubois, 2003)
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MICH Fit of Daily Steps
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Paper & Code

arXiv: R Package:

Davis Berlind, Lorenzo Cappello, Oscar Madrid Padilla A Bayesian framework for change-point detection with uncertainty quantification



34/45

References I

Bai, J. (2010). Common breaks in means and variances for panel data. Journal of Econometrics 157(1), 78–92. Nonlinear and
Nonparametric Methods in Econometrics.

Bai, J. and P. Perron (2003). Computation and analysis of multiple structural change models. Journal of Applied
Econometrics 18(1), 1–22.

Bohling, G. and M. Dubois (2003). An integrated application of neural network and markov chain techniques to the prediction
of lithofacies from well logs: Kansas geological survey open-file report 2003-50, 6 p. Group 6.

Frick, K., A. Munk, and H. Sieling (2014). Multiscale change point inference. Journal of the Royal Statistical Society Series B:
Statistical Methodology 76(3), 495–580.

Fryzlewicz, P. (2024). Narrowest significance pursuit: Inference for multiple change-points in linear models. Journal of the
American Statistical Association 119(546), 1633–1646.
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Mean-Variance Simulation Study

• Recreate simulation study for mean and variance jumps introduced in Pein et al. (2017).
5,000 replicates for T ∈ {100, 500, 1000} and J∗ ∈ {2, 5, 10}.

• Calculate bias |J∗ − J| and measure accuracy of τ̂ 1:Ĵ with FPSLE and FNSLE statistics:

dFPSLE(τ̂ 1:Ĵ∥τ 1:J) :=
1

2(Ĵ + 1)

Ĵ+1∑
j=1

|τ̂j−1 − τij−1|+ |τ̂j − τij |,

{ij}J+1
j=1 :=

{
i ∈ [J + 1] : τij−1 < (τ̂j−1 + τ̂j)/2 ≤ τij ∀ j ∈ [J + 1]

}
dFNSLE(τ̂ 1:Ĵ∥τ 1:J) := dFPSLE(τ 1:J∥τ̂ 1:J)

• Fit MICH with J set to true value (Ora-MICH) and selected from the ELBO (Auto-MICH)
and return 90% credible sets.

• Compare to H-SMUCE (Pein et al., 2017) with α ∈ {0.1, 0.5} and PELT (Killick et al.,
2012).
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Mean-Variance Simulation Results
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Choice of πt

• Localization results valid when πt = T−1 for each t.

• Uniform prior may reduce power and result in false negatives in small samples.

• Choosing π1:T so that:

E [log πt − log πt+1] = 0

leads to closed form recursions.

Davis Berlind, Lorenzo Cappello, Oscar Madrid Padilla A Bayesian framework for change-point detection with uncertainty quantification
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E[π1:T | y1:T ] under Null Model
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VB Details

• Finding best q ∈ QMF is equivalent to simple back-fitting procedure.

• Given initial guess of q, define residual mean, precision, and variance correction terms:

r̃t := yt −
J∑

j=1

Eqj [λjtµjt ]

Eqj [λjt ]
−

J+L∑
ℓ=J+1

Eqℓ [µℓt ]

λt :=
J∏

j=1

Eqj [λjt ]
N∏

k=J+L+1

Eqk [λkt ]

δt :=
J∑

j=1

(
Eqj [λjtµ

2
jt ]

Eqj [λjt ]
−

Eqj [λjtµjt ]
2

Eqj [λjt ]2

)
+

J+L∑
ℓ=J+1

Varqℓ (µℓt)

Davis Berlind, Lorenzo Cappello, Oscar Madrid Padilla A Bayesian framework for change-point detection with uncertainty quantification
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VB Residuals

• Iteratively partial out components and fit single change-point model (modulo correction
term δt):

• Mean-SCP to r̃−ℓt with precision parameters λt

r̃−ℓt := r̃t + Eqℓ [µℓt ]

• Var-SCP to r̃t with precision parameters λ−kt

λ−kt := Eqk [λkt ]
−1λt

• MeanVar-SCP to r̃−jt with scale parameters λ−jt

r̃−jt := r̃t +
Eqj [λjtµjt ]

Eqj [λjt ]

λ−jt := Eqj [λjt ]
−1λt

Davis Berlind, Lorenzo Cappello, Oscar Madrid Padilla A Bayesian framework for change-point detection with uncertainty quantification
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Simulation Details

• Fixing the number of observations T , the number of change-points J, the minimum
spacing condition ∆T , and a constant C > 0.

• Drawing τ 1:J∗ uniformly from [T ] subject to the minimum spacing condition
|τj+1 − τj | ≥ ∆T with τ0 = 1 and τJ+1 = T + 1.

• Picking standard deviations such that s0 := 1 and sj := 2Uj where

{Uj}Jj=1
i.i.d.∼ Uniform(−2, 2).

• Letting µ0 := 0, drawing J∗ independent Rademacher variables ξj , and setting:

µj := µj−1 + ξjC
(
min{s−1

j

√
τj+1 − τj , s

−1
j−1

√
τj − τj−1}

)−1

.

• Drawing yt
ind.∼ N

(∑J
j=0 µj1{τj≤t<τj+1},

∑J
j=0 σj1{τj≤t<τj+1}

)
.
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InspectChangepoint Fit of Oil Well (Bohling and Dubois, 2003)
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L2hdchange Fit of Oil Well (Bohling and Dubois, 2003)
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α-Mixing

Assumption 3

Given the stochastic process {yt}t≥1, assume that for any t0 ∈ N, and some distributions F0

and F1, there are stochastic processes {y0,t}t≥1 and {y1,t}t≥1 such that y0,t ∼ F0, and
y1,t ∼ F1, and yt := y0,t1{t<t0} + y1,t1{t≥t0}. Additionally, assume that:

(i) {y0,t}t≥1 and {y1,t}t≥1 are α-mixing processes with respective coefficients {α0,k}k≥1 and
{α1,k}k≥1 that satisfy max{α0,k , α1,k} ≤ e−Ck for some C > 0.

(ii) There exist constants δ1,D1 > 0 such that
supt≥1 max{E

[
|y0,t |4+δ1

]
, E
[
|y1,t |4+δ1

]
} ≤ D1.
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