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Introduction

Existing change-point detection (CPD) methods generally do not provide uncertainty
quantification for the point estimates they return. Bayesian CPD methods can provide
uncertainty quantification, but generally lag behind the state-of-the-art in performance and
computational cost. We address this gap in the literature by introducing a novel Bayesian
method that can efficiently detect multiple structural breaks in the mean and variance of a
length T time-series and return α -level credible sets around the estimated locations of the
changes. In simulations, our method is competitive with other state-of-the-art CPD methods
and returns credible sets that are an order of magnitude smaller than the confidence intervals
returned by competitors.

Single Change-Point Models

▶ Generic Single Change-Point (SCP) Model: We introduce a latent change-point
variable τ ∈ [T ] to index a change in the mean µ1:T and/or precision Λ1:T signals:

yt | µt,Λt
ind.∼ Nd

(
µt,Λ

−1
t

)
, [ t ∈ [T ],

τ ∼ Categorical(π1:T ).
▶ SCP Models:

Mean-SCP Var-SCP MeanVar-SCP

Model
µt = b1{t≥τ},

b ∼ Nd (0,ω−1
0 Id).

λt = s1{t≥τ},

s ∼ Gamma(u0, v0).

µt = b1{t≥τ},

λt = s1{t≥τ},

b | s ∼ N(0, (ω0s)−1),
s ∼ Gamma(u0, v0).

Multivariate ✓ ✗ ✗

▶ Posterior Quantities: The conjugate priors in each SCP model ensure closed forms for the
marginal likelihood p(y1:T | τ) and lead to efficient computation of posterior quantities:
▶ Posterior distribution of τ: τ | y1:T ∼ Categorical(π1:T ),

πt ∝ πtp(y1:T | τ = t).
▶ Point-Estimate: τ̂MAP := arg max1≤t≤T πt .
▶ α-Level Credible Set: CS(α ,π1:T ) := arg minS⊆[T ] |S | s.t.

∑
t∈S πt ≥ 1 − α .

Localization Theory for Single Change-Point

Given true location of change t0 ∈ [T ], we aim to characterize the smallest localization error
{ϵT }T≥1 and a minimal set of conditions on ∆T = min{t0,T − t0 + 1} and the size of
Å[yτ − yτ−1] and Var(yτ)/Var(yτ−1) so that:

lim
T→∞

Ð ( |t0 − τ̂MAP| ≤ ϵT ) = 1 and lim
T→∞

ϵT
∆T

= 0. (1)

▶ Assumption 1 (Detectable Mean Change): Suppose Å[yt] = b01{t≥t0} for some
t0 ∈ [T ] and b0 ∈ Òd and Var(yt) = Λ−1

t . Assume that ∆T ≳ logT and

∆T min1≤t≤T ∥Λ1/2
t b0∥22 ≫ d logT .

▶ Assumption 2 (Detectable Variance Change): Suppose Var(yt) = (s20)1{t≥t0} for some
t0 ∈ [T ] and 0 < s < s0 < s < ∞. Assume that ∆T ≳ logT and ∆T (s20 − 1)2 ≫ logT .

Theorem 1 (SCP Localization Rates)

Let y1:T be a sequence of independent, sub-Gaussian observations with ∥yt∥ψ2 = O(1). For
each SCP model, the following table summarizes conditions on ∆T and the signal strength

κ (b0, s20) for which τ̂MAP satisfies (1) with ϵT = O
(

logT

κ (b0,s20)

)
:

Model Assumptions κ (b0, s20)
Mean-SCP Assumption 1, Var(yt) = Λ−1 ∥Λ1/2b0∥22
Var-SCP Assumption 2, Å[yt] = 0 (s20 − 1)2
MeanVar-SCP Assumption 1 or 2 max{min{b20, b20/s20}, (s20 − 1)2}

We also show that when y1:T is an α -mixing process, the localization errors above will still hold
if we replace logT with an approximately log2T factor.

Multiple Independent CHange-Point (MICH) Model

We can modularly combine SCP models to allow for multiple change-points in µ1:T
and/or λ1:T :

yt | µt, λt ind.∼ N(µt, λ−1t ), 1 ≤ t ≤ T ,

µt := µ0 +
J+L∑
i=1

µit :=
J∑
j=1

bj1{t≥τj } +
J+L∑
ℓ=J+1

bℓ1{t≥τℓ },

λt := λ0

J+K∏
i=1

λit :=
J∏
j=1

s
1{t≥τj }
j

J+L+K∏
k=J+L+1

s1{t≥τk}
k

,

τi
ind.∼ Categorical(π i ,1:T ), 1 ≤ i ≤ J + L + K ,

{bj, sj} ind.∼ Normal-Gamma(0,ω0, u0, v0), 1 ≤ j ≤ J,

bℓ
ind.∼ N(0,ω−1

0 ), J < ℓ ≤ J + L,

sk
ind.∼ Gamma(u0, v0), J + L < k ≤ J + L + K .

Variational Bayesian Inference

▶ Following the example set in Wang et al. (2020), we use Mean-Field Variational Bayes
to find a q ∈ QMF that approximates true posterior of MICH:

QMF :=

q : q =
J∏
j=1

qj (bj, sj, τj)
J+L∏
ℓ=J+1

qℓ (bℓ, τℓ)
J+L+K∏
k=J+L+1

qk (sk, τk)
 .

▶ Computationally efficient backfitting procedure to find q:

Algorithm 1 MICH Variational Approximation
Initialize Posterior Parameters.
repeat
▶ For ℓ ∈ {1, . . . , L}: Subtract out ℓ th mean component from

µ1:T and update qℓ by fitting Mean-SCP model to partial
residual.

▶ For k ∈ {1, . . . ,K }: Divide out k th scale component from λ1:T
and update qk by fitting fit Var-SCP model to partial residual.

▶ For j ∈ {1, . . . , J} Partial out j th mean and scale component
from µ1:T and λ1:T and update qj by fitting MeanVar-SCP
model to partial residuals.

until Convergence

▶ Algorithm 1 is equivalent to maximizing the ELBO via coordinate ascent, guaranteeing
convergence. Each outer loop of Algorithm 1 is O(T (J + L + K )).

▶ Can use value of ELBO to automatically select J , L, and K (MICH-Auto).

Oil Well Lithology

Figure 1: Recordings from six petrophysical measures from the Shankle oil well in Southwest Kansas. L̂ = 42
estimated changes with 99% credible sets shaded. 26 of the estimated changes or their 99% credible sets are
within one index of a true change and 24 of the true changes are covered by a credible set.

Simulation Results

We compare the performance of MICH to state-of-the-art methods E-Divisive (James and Matteson,
2015) ℓ2-HD (Li et al., 2023), and Inspect (Wang and Samworth, 2017) in a simulation study where a
multivariate sequence y1:T exhibits L mean changes in a fraction p of its d coordinates. MICH clearly
beats the other methods in terms of bias and localization error, even in the sparse setting p = 0.1.

Figure 2: Box-plots of evaluation metrics across 5,000 replicates with T = 250 and ∆T = 10. Diamonds (^) display mean of
each statistic. Bias |J∗ − J | assesses each model’s ability to estimate correct number of changes (lower is better). FPSLE and
FNSLE assess each model’s ability to accurately estimate the locations of the changes (lower is better). Set Length and CCD
report the average size and coverage of credible/confidence sets for methods that provide uncertainty quantification (dashed
line indicates nominal coverage level for α = 0.1).
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